
DOCUMENT RESUME

ED 084 881 EM 011 705

AUTilOP Mitchell, Ron; Conner Michael
TITLE A Bricf Description of the Purposes and Concepts of

the Coursewriter II Preprocessor. System Memo Number
Four.

INSTITUTION Texas Univ., Austin. Computer-Assisted Instruction
Lab.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPOPT NO SM-4
PUB DAT2 May 71
NOTE 7p.

EDRS PRICE MF-$0.6'3 HC-$3.29
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

Curriculum Development; *Laboratory Manuals;
Programing Languages

IDENTIFIERS *Coursewriter II Preprocessor

ABSTRACT
A brief description of the Coursewriter II

preprocessor is provided. This preprocessor, a program written in
FORTRAN IV on the CDC 6600 computer, is designed to reduce the
repetition of effort that takes place from the time of the author's
conception of a course to the time of its availability for on-line
student instruction. The programer deals mainly with two types of
information: 1) control logic or course structure information, and 2)
conteat information. The preprocessor enables the programer to deal
with the latter of these in a more natural way than Coursewriter II
allows. The effectiveness of the preprocessor is currently being
ealuated by using it to implement a 1500 Coursewriter II precalculis
math course. (CH)

THE UNIVERSITY OF TEXAS AT AUSTIN

Computer Assisted Instruction Laboratory

AUSTIN

U S DEPARTMENT OF HEAL TN
EDUCATiDN WELFARE

NATIONAL INSTITUTE OF
EDUCATION

A BRIEF DESCRIPTION OF THE PURPOSES AND

CONCEPTS OF THE COURSEWRITER II

PREPP-)CESSOR

SYSTe;IS NEWO NO. 4

Ron Mitchell
Mike Conner

May 1971

Supported By:

THE NATIONAL ECIENCE FOUNDATION
Grant GJ 509 X

Computer-Assisted Instruction Laboratory
C. Victor Bunderson, Director

The University of Texas at Austin
Austin, Texas 78712

A BRIEF DESCRIPTION OF THE PURPOSES AND CONCEPTS

OF THE COURSEWRITER II PREPROCESSOR

The Course writer II preprocessor is a program written in FORTRAN IV

on the CDC 6600 computer. The output is Coursewritr II statements on cards,

ready for input to the 1500 Coursewriter II card assembler. The 6600 was

used because of the more powerful FORTRAN compiler and because of the extremely

fast turn-around. A more extensive description of the preprocessor may be

found in A User's Guide to the Preprocessor.' This document provides too

much detail and has too specific an application for the personnel and proce-

dures at The University of Texas Computer-Assisted Instruction Laboratory to

be of general interest. Therefc.e, this short description of the preprocessor

was provided to serve a more general audience. The effectiveness of the pre-

processor is currently being evaluated by using it to implement a 1500 C rse-

writer II precalculus math course.' The results of this evaluation will be

published at a later date as a systems memo, available at The University of

Texas Computer-Assisted Instruction Laboratory, Austin, Texas.

Ron Mitchell and Mike Conner. A User's Guiie to the Preprocessor.
Systems Memo No. 3, Computer-Assisted Instruction Laboratory, The University
of Texas, Austin, Texas, 1971.

2

The preprocessor was designed to reduce the repetition of effort

which takes place from the time of the author's conception of a course to

the time of its availability for on-line student instruction. The process

of implementation is normally stepwise, as shows. below:

AUTHOR

4,

PLANNING GUIDES

PROGRAMMER

CODING SHEETS

KEYPUNCH

CARDS

COMPUTER

The programmer deals mainly with two types of information: (1) control

logic or course structure information, and (2) content information. The pre-

processor was designed to enable the programmer to deal with the latter of

these in a more natural way than Coursewriter II (CW II) allows.

In most cases, che course content information is completely and

explicitly stated in the author's planning guides, and the task of the pro-

grammer is, for the most part, that of the tedious and completely mechanical

translation of the planning guides into the appropriate sequence of CW II

statements. It is difficult, if not impossible, to perform this tedious

translation on even small amounts of material, much less on the enormous

amounts required by a major course, without introducing a tremendous number

of errors.

3

The solution to this problem is to make use of that content informa-

tion which is explicitly stated in the planning guides which would thus

relieve the programmer as much as possible of this mechanical task and enable

him to concentrate on the program logic. The steps of progressing from course

conception to implementation would be the following:

Content
Information

AUTHOR

PLANNING GUIDES

Lo3ic

R,,og_,arr:&r

t

Co,ling Seeta

/
g-PUNCH

CARDS

4

COMPUTER

In making this bypass, the following constraints must be observed:

(1) Keypunching must remain more or less a transcription task.

(2) No additional restrictions must be placed on the author.

(3) A means for collation of the transcribed course content
information and the programmer-produced course logic must
be provided.

(4) The programming of the logic should be made easier and clearer
by allowing the programmer a convenient and natural (in relation
to programming) means of referencing the course content.

The preprocessor was designed to make this bypass according to the above

criteria.

4

The preprocessor has added seven op-codes to the CU II language.

These op-codes allow course content information to be entered directly

from the planning guides by the keypunch operator and to be referenced

within the flow of course logic by the programmer.

The course content information which is explicitly stated in the

planning guides and zecognized by the preprocessor is of two types: message

data ari variable data. Message data c_e display templates which are constant

except for references to variable data. ariable data consist of variable

length literal strings which may be referenced by t'a programmer. With the

preprocessor, the flow from author to computer would be as shown in the

following diagram:

AUTHOR

PLANNING GUIDES

Content Logic

Keypunch

Cards

Prormammer

Coding Sheets

Keypunch

Cards

COLLATION

PREPROCESSOR

CARDS

COMPUTER

5

The keypunch operator can define message data and variable data

from the planning guides (with a minimal amount of effort by the programmer)

by use of certain of the op-codes, and the programmes has easy access to

these data by variable refe::ence and by use of another of the op-codes.

Collation has been reduced to a trivial task since the information trans-

cribed by the keypunch operator is analogcLs to declarations 4n ALGOL and

.ppears before any program logic produced by the programmer. Brief descrip-

tions of the added op-codes are shown below:

BEGIN PROBLEM (BP). . . . Signifies the beginning of a problem and defines the
base -labEi for the problem.

'ARIABLE DECLARATION (VD) Allows variable data to be declared and variable
attributes to be assigned.

ENTER DATA (ED) Enables a table of variable values to be created.

MESSAGE DEFINITION (MD). Allows message data to be defined and assigned
labels by which they may later be referemed.
Message data ray in turn contain references to
variable data.

DISPLAY MESSAGE (DM). . . Enables the programmer to reference, by label,
previously define3 message data.

PUNCH TABLE (PT) Causes generation of a series of statements that
provide the means by wnich variable data take on
new values.

END PROBLEM (ZZ) Signals the end of a t-roblem and causes reinitiali-
zatim of all pointers, flags, and tables.

